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Stacked Selective Ensemble for PM2.5 Forecast
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Abstract— In this paper, we propose a new stacked selective
ensemble-backed predictor (SSEP) to forecast the concentration
of PM2.5 based on the impact of measurements of the known
air pollutants and meteorological data on the unknown PM2.5
concentration over the following 48 h. It was found that a
single learner cannot validly uncover and model the relationship
between the future PM2.5 concentration and the current and
historical meteorological and pollutant data, mainly because any
individual learner has limitations, especially facing to highly com-
plex and ever-changing environmental problems, such as PM2.5
prediction. Ensemble methods, which are widely acknowledged to
yield strong generalization ability by boosting weak learners, are
used in this paper to solve the aforesaid challenge. Our solution,
aligned with an analysis of influencing factors on the future
PM2.5 concentration, generates multiple component learners
for aggregation by introducing three types of diversities. Then,
we adopt a pruning method to remove the negative component
learners in each diverse type according to dynamic thresholds,
which are determined by jointly considering the performance of
each individual learner and the correlations between each pair
of learners. A stacking technique is finally applied to the selected
positive component learners to forecast the PM2.5 concentration
in the future. Thorough experiments demonstrate the superiority
of our proposed SSEP in contrast to relevant state-of-the-art
models when applied to PM2.5 prediction.

Index Terms— Air pollutants, diversity, fine particulate mat-
ter (PM2.5), meteorological factors, selective ensemble, stacking.

I. INTRODUCTION

DURING recent decades, high-speed industrialization has
massively facilitated people but simultaneously intro-

duced many passive influences, such as environmental pol-
lution, resource shortage, and ecological damage. Among
these influences, environmental pollution caused by man-
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Fig. 1. Examples of typical PM2.5 monitors.

or nature-made destructive behavior forces exceedingly haz-
ardous substances into our living environment, surpassing the
environment’s self-purification ability. Air, soil, and water
pollutions are the three typical pollution problems. Compared
with the latter two, polluted air is very likely to give rise to
a greater risk not only deteriorating human health but also
contributing to panic within all of society, primarily due to its
ubiquity. Removing air pollutants and improving air quality
might be incapable of being fulfilled in the short term but may
be a chronic project. Therefore, one of the dominant tasks
currently is to rely on air quality prediction that can guide
people toward healthy travel and facilitate the decision-making
of governments toward production halts or traffic restrictions,
and so forth. Hence, an efficient and effective predictor of air
pollutant concentration is strongly desired.

The main ways of polluting air include some anthropogenic-
caused harmful gases and particulates emitted due to motor
vehicles, the processes of steel making, oil refining, and
pharmaceuticals, as well as the combustion of oil, coal, and
natural gas [1]. Six of the most frequently seen air conta-
minants consist of NO2, SO2, O3, CO, PM2.5 [fine particu-
late matter (PM)], and PM10 (respirable PM). The first four
gaseous pollutants readily result in respiratory inflammation
and nervous system disorder when the concentration exceeds
a certain degree. In contrast, the remaining two types of PM
refer to the particles with the aerodynamic diameters smaller
than or equivalent to 2.5 and 10 μm. It is evident that PM2.5
is the component of PM10, and its index is less than PM10 [2].
In comparison with respirable PMs, fine PM easily intrudes
into human lungs and is cleansed with difficulty. With con-
stant exposure in environments with high-concentration PM2.5,
the morbidity and mortality of the public inevitably grow.
Thus, more research attention has been paid to the monitoring
of PM2.5 [3], [4] and relevant instruments [5], [6], as shown
in Fig. 1.
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The variations of PM2.5 concentration follow a compli-
cated process. Many studies are being devoted to unveiling
the composition of influencing meteorological factors and
pollutants, as well as the mechanism of impact between
the above-mentioned meteorological factors and pollutants at
present and in historical times and the PM2.5 concentration
that occurs later. A great number of good works were pro-
posed based on computational dynamic models to predict
pollutants [7], [14]. Lu et al. [11], [12] provided a 3-D
system for modeling the urban and regional air pollution
from the following four main aspects: a meteorological model,
a tracer transport code, a chemical and aerosol microphysical
model, and a radiative transfer code. Huang and Tai [13] and
Wang and Ogawa [14] discussed several typical meteorological
parameters, e.g., temperature, wind speed, wind direction,
humidity, and pressure, and their impacts on the variations
of PM2.5 concentration.

However, a growing number of studies have been devoted to
data-driven air quality forecasts since computational dynamic
models are neither easily fitted nor suitable for highly devel-
oped and overpopulated cities such as Beijing. In contrast with
computational dynamic models, data-driven methods are better
at mining the underlying relationships and thus have aroused
extensive attention during recent years. Ordieres et al. [15]
and Kumar and Jain [16] analyzed the correlations of typical
air pollutants in the temporal domain and forecasted the
changing tendency of air pollutant indices in the future.

Despite the competitive results attained by the aforemen-
tioned works, limited efforts have been made to validly
incorporate environmental and temporal features that were
found to be closely correlated with the future PM2.5 con-
centrations [17]. Elbayoumi et al. [18] applied multiple lin-
ear regression, principal component analysis, and principal
component regression to infer the indoor PM10 and PM2.5
concentration on the grounds of relevance in environmental
and temporal features. However, such linear models pose
difficulties when employed to describe the complicated and
ever-changing environmental problems, such as air quality
prediction [19], and thus, nonlinear models with substantial
descriptive powers are expected to address these problems.
In [20]–[22], single machine learners, such as neural networks,
were introduced to well approximate the relationship between
the future PM2.5 concentration and the current and historical
records of meteorological and pollutant parameters.

However, some major limitations in the above-mentioned
studies exist. First, those predictive models only use linear
models or simply concatenate linear and nonlinear mod-
els, which scarcely address such a highly complex problem
as an air quality forecast. Second, those predictive models
solely take advantage of temporal features or environmental
features or indiscriminately combine temporal features and
environmental features as equivalent inputs into the regres-
sors. Aiming at resolving these problems, we adopted an
application (App) to gather a considerable number of mete-
orological and pollutant data. In terms of exploration and
analysis of our collected samples, the influencing factors on
the future PM2.5 concentration can be roughly categorized into
three respects, i.e., environmental factors (e.g., windy or not),

Fig. 2. App for gathering records of meteorological and pollutant historical
data.

temporal factors (e.g., PM2.5 values during the past hours), and
selected samples. Regarding the above-mentioned concerns,
this paper proposes a novel stacked selective ensemble-backed
predictor (SSEP) of the PM2.5 concentration in the future.
More specifically, the proposed predictor is implemented in
a three-stage framework. First, we create several component
learners with popular methods (e.g., support vector regressor
(SVR) [23]) to address the three categories of diversities,
which are produced by appropriately selecting environmen-
tal factors, temporal factors, and training samples. Second,
we employ a pruning technique to delete negative component
learners in each of the three categories in accordance with
dynamic thresholds, which are determined by jointly taking
the performance of each individual learner as well as the
correlations between each pair of learners into consideration.
Third, we apply a stacking method on the selected positive
component learners for aggregation and thus predict the PM2.5
concentration.

The layout of this paper is outlined as follows. Section II
first presents how to collect measurements of meteorologi-
cal variables and air pollutants and then describes the pro-
posed SSEP predictor of the future PM2.5 concentrations in
detail. In Section III, we conduct the performance comparison
between our SSEP model and state-of-the-art predictive mod-
els using the collected data samples. Section IV describes the
conclusions and discusses future work.

II. PROPOSED PREDICTIVE MODEL

Recent years have witnessed the rapid development of
industrialization in many countries, accompanied by boosting
environmental problems such as PM2.5, which highly con-
cern governments and people. Severe pollution does serious
harm to people’s health and safety. Therefore, a reliable
predictor of future PM2.5 concentrations is strongly required.
This section will first introduce how to collect data and the
corresponding analysis, followed by providing the proposed
stacked selective ensemble-based SSEP predictor of future
PM2.5 concentrations.
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Fig. 3. Box plot of the distribution of log MSE across (a) different numbers of environmental factors, (b) different numbers of temporal factors, and
(c) different ratios of the selected samples to the whole data samples.

A. Data Collection and Analysis

We focus on the variations in PM2.5 concentration in 12
typical locations in the city of Beijing, the capital of China.
We collected the hourly measurements of six air contami-
nants (including NO2, O3, PM2.5, PM10, CO, and SO2) and
six meteorological variables (including humidity, temperature,
pressure, weather, wind speed, and wind direction) during
the last year. Tens of thousands of groups of measurements
were collected and deployed to establish and examine the
predictive model of PM2.5 concentration. An elaborately
designed Android App using JAVA language was applied to
access to [24], [25] each hour to automatically collect the
hourly records of meteorological indices and air contaminants,
as exhibited in Fig. 2. The hourly records are the average
values within 1 h. A portion of the indicators with their
associated units is as follows: PM2.5 (μg/m3), PM10 (μg/m3),
CO (μg/m3), SO2 (μg/m3), NO2 (μg/m3), O3 (μg/m3), tem-
perature (◦C), humidity (%), and pressure (hPa). There are
16 types of weather, and their values and the associated phys-
ical meanings are 0 (sunny), 1 (cloudy), 2 (overcast), 3 (rainy),
4 (sprinkle), 5 (moderate rain), 6 (heavy rain), 7 (rain storm),
8 (thunder storm), 9 (freezing rain), 10 (snowy), 11 (light
snow), 12 (moderate snow), 13 (heavy snow), 14 (foggy),
15 (sand storm), and 16 (dusty). There are eight types of
wind direction, and their values and the associated physical
meanings are 0 (north wind), 1 (northwest wind), 2 (west
wind), 3 (southwest wind), 4 (south wind), 5 (southeast wind),
6 (east wind), and 7 (northeast wind). The wind speed includes
18 levels, from 0 (no wind) to 17 (super typhoon). Note that
aerosol optical thickness is not a typical meteorological index
but is measured and retrieved using LiDAR [26], and thus,
it is not included in this paper. The concentrations of NO2,
SO2, O3, CO, PM2.5, and PM10 were separately recorded
by using the TE-42CTL NO-NO2-NOx analyzer, TE43C SO2
analyzer, TE-49C O3 analyzer, TE48C CO analyzer, and
TEOM P1400a, respectively.

The majority of traditional predictive models of PM2.5 con-
centration does not pay attention to the specific characteristics
of meteorological and pollutant data but merely resort to sev-
eral complicated learning tools or their hybrid models. Neural
networks can be considered an example. Evidently, shallow
neural networks are unable to build a good mapping from the
meteorological and pollutant historical data to the future PM2.5

concentration, i.e., they result in underfitting or large bias
on the training data set and are similarly problematic on the
testing data set. In contrast, complicated deep neural networks,
because of their use of deep layers and massive neurons,
have a substantial descriptive ability and can better predict the
PM2.5 concentration by learning the meteorological and pol-
lutant historical data on the training set; however, they might
introduce overfitting or a large variance on the testing set and
thereby have inferior generalization ability. One good solution
to combat the problem illustrated above is to fuse complicated
learning models with big data. Zheng et al. [27] proposed an
excellent approach for forecasting air quality based on a four-
component model, involving a temporal predictor, a spatial
predictor, a dynamic aggregator, and an inflection predictor.
Very recently, Soh et al. [28] provided an extraordinary deep
learning-based work for air quality prediction, which merges
the popular neural network architectures of a convolutional
neural network and a long short-term memory (LSTM) model
and results in very impressive prediction performance. Moti-
vated by these two studies, the other solution is to deeply mine
the characteristics of meteorological and pollutant data, and on
this basis, multiple specific simple learning models are devised
to be fused to derive an overall air quality prediction system.
In this work, we adopt the second solution and will first make
comprehensive analyses on meteorological and pollutant data
in what follows.

Based on the measured data collected by our App, we have
derived the subsequent three observations. First, we find that
using the entire set of environmental factors to predict PM2.5
is not always superior to using a portion of them. For a vivid
illustration, we randomly select 1000 sample sets, each of
which contains at least 200 independent data samples. For each
sample set, we randomly choose k (e.g., k = 3) environmental
features from all the environmental factors to forecast the
PM2.5 concentration 24 h later. The number k is assigned in
the ordered sequence 3, 4, . . . , 12. Based on the popular SVR
provided in the LibSVM package [29], 60% of one sample
set is employed for training, 20% percent for validation, and
the remaining 20% for testing. The prediction accuracy is
computed using the mean squared error (MSE). An elegant
predictive model is expected to obtain an MSE value close
to 0. For a certain value of k, we obtain 1000 MSE values
and show the associated box plot of the distribution of log
MSE in Fig. 3(a). Similarly, the log MSE values of the other
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nine values of k can be derived, and their box plots are
presented in Fig. 3(a) for comparison. One can see that in some
scenarios, using a portion of the proper features (e.g., k = 8)
can generate greater performance and higher stability than
directly using the entire 12 features. Furthermore, we also find
that in the feature sets with the top 5% performance, NO2 has
the lowest occurrence frequency, much smaller than that of
the other features.

The second observation concerns predicting the PM2.5 con-
centration 24 h later, in which case the use of more histor-
ical PM2.5 data is able to deliver better prediction accuracy.
Equivalently, we use the same 1000 sample sets as used in
the first context. For each sample set, we separately select l
temporal features, where l = 2, 3, . . . , 11 is the number of
features, which means that we apply the PM2.5 data at the
current moment and in the previous l − 1 hours to forecast
the PM2.5 concentration 24 h later. For instance, when l is
assigned as 3, we use three features, including the PM2.5 data
at the current moment T0 and the previous moments T−1 and
T−2 to predict the PM2.5 concentration at T24. The same setting
is adopted for training, validation, and testing, as well as the
evaluation index for computing the prediction accuracy. For
each of l value, we acquire 1000 MSE values and show the
associated box plot of the distribution of log MSE in Fig. 3(b).
As shown in the figure, using a larger quantity of historical
PM2.5 data can lead to greater prediction accuracy, but the
gain tends to be small as l grows.

The last consideration is the influence of selected samples
on the performance of the PM2.5 predictor. We randomly
choose 1000 sample sets, each of which contains 1/m of
all the data samples, where m is set as 1, 2, . . . , 10. We use
the 12 environmental features measured at the current time,
the SVR for learning, and the MSE for evaluation, and set the
ratio of training, validation, and testing sets to 3:1:1, the same
as used earlier. For each of the m values (expect m = 1),
1000 MSE values are computed, and the associated box plot of
the distribution of log MSE is shown in Fig. 3(c). We observe
that in some cases, using a portion of the samples for the PM2.5
forecast is superior to applying the overall data samples.

B. Stacked Selective Ensemble for PM2.5 Forecast
According to the analyses stated above, appropriately using

selected samples, environmental factors, and temporal factors
is beneficial to devising a well-designed predictor of PM2.5
concentration. The ensemble learning is good at solving this
problem, and it will become better if an appropriate pruning
technique is used before aggregation [30]. Basically, two of the
most typically used ensemble learning methods are bootstrap
aggregating (bagging) [31] and random subspace [32], which
have been widely applied in industrial Apps [33]–[35], image
processing [36]–[38], remote sensing [39], [40], and so on.
In fact, these two methods are independently suitable to
be applied to selected samples and environmental factors to
forecast future PM2.5 concentrations. In what follows, the pro-
posed SSEP model will be illustrated from the subsequent
three steps.

First, we generate component learners based on the three
categories of diversities that originate from selected samples,

Algorithm 1 Framework of Bagging

Input: S: Training set; L: Learner; N B : Number of iterations
1: for n = 1 to N B

2: Sn = bootstrap sample from S.
3: C B

n = L(Sn )
4: end

Output: Multiple component learners {C B
n |n = 1, · · · , N B }.

Algorithm 2 Framework of Random Subspace

Input: F : Feature set; L: Learner; N R : Number of iterations
1: for n = 1 to N R

2: Fn =bootstrap feature from F .
3: C R

n = L(Fn)
4: end

Output: Multiple component learners {C R
n |n = 1, · · · , N R}.

Algorithm 3 Framework of Inclusive Subspace

Input: F : Feature set; L: Learner; N I : Number of iterations
1: for n = 1 to N I

2: Fn = [F(1), . . . , F(n + 1)].
3: C I

n = L(Fn)
4: end

Output: Multiple component learners {C I
n |n = 1, · · · , N I }.

environmental factors, and temporal factors. We apply
bagging, which was proposed to combine the benefits of
bootstrapping and aggregation [31], to the selected samples.
Bootstrapping is used to create multiple sets of samples by
randomly sampling with the replacement of the original train-
ing data, and then, multiple learners are generated by training
on the above multiple sets. In general, each of the multiple
sets has the same size as the original training data. Therefore,
we can obtain multiple component learners with the diversity
of the selected samples from different subsets. Algorithm 1
summarizes the pseudocode for producing component learners
with bagging.

The random subspace method, an elaborate integration of
bootstrapping and aggregation that is akin to bagging and
enjoys the merits of both approaches [32], was applied to
environmental factors. Compared to bagging, which bootstraps
training samples, the difference of random subspace is that it
exerts bootstrapping on the input features. Generally, with a
high-dimensional feature vector or a small number of training
samples, it is very likely that the problem of overfitting will
be introduced. As presented in Fig. 3(a), directly using all
12 features is not always superior to using a portion of the
features, which might be caused by overfitting. To settle this
problem, a novel subset composed of a portion of the features
is generated to decrease the low conformity between the size
of the training samples and the length of the feature vector.
Using the new subset, we can obtain a component learner.
Repeating the above-mentioned process by random sampling
applied to the feature space, we are able to establish multiple
component learners with the diversity of the environmen-
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tal factors. Algorithm 2 shows the pseudocode for creating
component learners with the random subspace.

For temporal factors, this paper proposes a new method
to generate diversity. It is apparent that the historical data
that are closer to the current moment have a higher cor-
relation with the PM2.5 concentration at the next moment
and thus make a greater contribution to the PM2.5 predic-
tion. On this basis, we consider the present time to be T0,
and the PM2.5 concentration after T0 is to be predicted.
Therefore, we build multiple subsets, which, respectively,
contain the PM2.5 values recorded at the time of {T0, T−1},
{T0, T−1, T−2}, {T0, T−1, T−2, T−3}, · · · . Using these new sub-
sets, we can derive multiple component learners with a
diversity of temporal factors. Following the name of random
subspace, we call this new method inclusive subspace since
each subset is included in its latter subsets. Algorithm 3 shows
the pseudocode for generating component learners with the
inclusive subspace approach.

Second, we employ a pruning technique to delete negative
component learners in each of three types. Directly aggregat-
ing all the component learners is not a good choice due to
the existence of negative component learners that deteriorates
the effectiveness of ensemble [30]. Supposing that a task is to
use an ensemble that approximates a function H : R

s → R
t ,

z ∈ R
s is sampled in light of a distribution P(z), the expected

output of z is z̄, and the real output of the x th component
learner is Hx(z), we can derive the output of the ensemble
on z is

�H (z) =
r

�

x=1

ωx Hx(z) (1)

where r means the total number of component learners, ωx ∈
[0, 1], and

�r
x=1 ωx = 1. The generalization error Errx (z) of

the x th component learner on z and the generalization error
�Err(z) of the ensemble on z are defined as

Errx (z) = (Hx(z) − z̄)2, (2)
�Err(z) = ( �H(z) − z̄)2. (3)

Then, the generalization error of the x th component learner
and that of the ensemble on P(z) can be expressed by

Errx =
�

Err x (z)P(z)dz (4)

�Err =
�

�Err(z)P(z)dz. (5)

The correlation between the x th and yth component learners
can be expressed by

Corrxy =
�

�

Errx
�

Erry P(z)dz (6)

where Corrxy = Corryx and Corrx x = Errx . Incorporating
(2) and (4), we can derive

�Err(z) =
�

r
�

x=1

ωx Hx(z) − z̄

�

⎛

⎝

r
�

y=1

ωy Hy(z) − z̄

⎞

⎠ . (7)

Furthermore, combining (6)–(8), we are able to attain

�Err =
r

�

x=1

r
�

y=1

ωxωyCorrxy . (8)

For convenience of analysis, we hypothesize that the overall
component learners are of the equivalent contributions to the
ensemble, or in other words, of the equal weights. Therefore,
(8) can be rewritten as

�Err = 1

r2

r
�

x=1

r
�

y=1

Corrxy . (9)

Next, we attempt to exclude one certain component leaner,
for instance, the qth component learner, from the ensemble and
concentrate on whether this operation is beneficial to the final
ensemble output. After removing the qth component learner,
according to (2)–(10), we can derive the generalization error
of the new ensemble as

�Err � = 1

(r − 1)2

r
�

x=1
x �=q

r
�

y=1
y �=q

Corrxy . (10)

From (9) and (10), we deduce that the ensemble that deletes
the qth component learner is superior to the one that contains
the qth component learner if �Err � is lower than �Err , namely,

�Err � 1

2r − 1

⎛

⎜

⎜

⎝

2
r

�

x=1
x �=q

Corrxq + Errq

⎞

⎟

⎟

⎠

. (11)

Moreover, we substitute (9) into (11) and make simplification

(2r − 1)

r
�

x=1

r
�

y=1

Corrxy � 2r2
r

�

x=1
x �=q

Corrxq + r2 Errq . (12)

As thus, we can make sure that the qth component learner is
a negative component learner and should be excluded if its
associated generalization error is larger than a threshold

Errq �T hrq = 2r − 1

r2

r
�

x=1

r
�

y=1

Corrxy − 2
r

�

x=1
x �=q

Corrxq . (13)

Based on the above-mentioned pruning criterion, we can
delete negative component learners from the entire three
categories of component learners. In traditional methods, each
component learner is examined regarding whether or not it
negatively impacts the ensemble compared to all the other
component learners. Instead, in this work, we consider the
following facts.

1) Each type of component learners (e.g., with the diverse
selected samples) is considerably different from the
other types of component learners (e.g. with the diverse
environmental factors or temporal factors), and thereby,
comparisons among them are unfair and lack sufficient
reasons.

2) The majority or even all of the component learners in
one certain type, due to their inferior performance, might
be excluded, which directly deteriorates the diversity and
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Fig. 4. Basic flowchart of the proposed SSEP predictive model.

indirectly decreases the effectiveness of ensemble. With
these concerns, we use a discriminative approach of
pruning that merely compares the component learners in
the same category and removes those component learn-
ers that introduce a passive influence on the ensemble.

Third, we implement a stacking technique on the selected
positive component learners to predict the future PM2.5
concentration. Note that in the first step, we generate N B

component learners with the diverse environmental factors,
N R component learners with the diverse temporal factors,
and N I component learners with the diverse selected sam-
ples. Next, in the second step, we use a pruning method
to remove negative component learners in each type and
maintain the positive component learners that comprise a
positive component learner set �C = [�C B , �C R, �C I ]∗, where
�C B ⊂ C B , �C R ⊂ C R , �C I ⊂ C I , and the superscript ‘∗’ means
transpose. Afterward, a simple method may be leveraged to
straightforwardly incorporate the selected positive component
learners to infer the prediction scores of PM2.5 concentration
in the future.

Nonetheless, in practical Apps, it was found that the afore-
said straightforward incorporation-based method works poorly.
According to the analyses on the problem of PM2.5 prediction
and the intermediate results, we claim that the poor perfor-
mance is very likely caused by the subsequent two reasons.
First, after the first and second steps, approximately 20%–50%
of component learners in each type will be excluded, and
thus, a considerable number of component learners will be still
preserved. In this case, due to the “curse of dimensionality,”
directly merging such high-dimensional data can easily result
in overfitting; therefore, it is not a beneficial approach to derive
a PM2.5 predictor with strong generalization ability. Second,
most poorly performing component learners will be neglected
if a straightforward fusion is used, which will inevitably be
an opportunity lost for improving the ensemble’s diversity.
Overall, it is not effective and advisable to directly aggregate
the selected positive component learners.

Based on the above-mentioned considerations, in this paper,
we first conduct the direct average on those selected pos-
itive component learners in each category and derive three
synthesized positive component learners, respectively, denoted
as �C B , �C R , and �C I . For convenience, we define a new
synthesized positive component learner set to be �C =
[�C B, �C R , �C I ]∗. Next, we merge the three synthesized positive
component learners to infer the PM2.5 value

p = w∗φ(v) + b (14)

where w and b are model parameters of weights and bias;
φ(·) is a function mapping the inputs into a high-dimensional
feature space. We set v as �C , i.e., [v1, v2, v3] = [�C B , �C R, �C I ].
Here, the following three strategies can be used to deter-
mine φ(·), w, and b.

1) Direct Average: We assign φ(·) as the identity function,
b = 0 and w = [1/3, 1/3, 1/3]∗, and derive

p(a) = 1

3

3
�

h=1

vh = 1

3
(�C B + �C R + �C I ). (15)

2) Weighted Average: We set φ(·) as the identity function,
b = 0 and w = [w1, w2, w3]∗ = (V ∗

t Vt )
−1V ∗

t pt , where
Vt = [v1, v2, · · · , vu]∗ and pt = [p1, p2, · · · , pu]∗ with
u is the total number of elements in the training set,
vi = [�C B

i , �C R
i , �C I

i ]∗ ∈ R
3 and pi ∈ R

1 are, respectively,
the i th feature vector and the i th real target output in
the training set, and derive

p(w) = w∗φ(v) = w1�C B + w2�C R + w3�C I . (16)

3) SVR-Based Regression: We resort to solving the subse-
quent convex optimization function

min
w,b,ζ ,ζ �

1

2
	w	2 + κ

u
�

i=1

�

ζi + ζ �
i

�

s. t.

⎧

⎪

⎨

⎪

⎩

w∗φ(vi ) + b − pi ≤ � + ζi

pi − w∗φ(vi ) + b ≤ � + ζ �
i

ζi , ζ
�
i � 0, i = 1, 2, · · · , u

(17)

where ζ and ζ � are a pair of slack variables as the margin
of the errors; � means the range of error tolerance; κ is a
positive regularization term for regulating the flatness of
the function p and tolerance limits of the error beyond �.
The constraints above assure that most of the instances
vi are located in the tube | pi − w∗φ(vi ) + b | � �.
Otherwise, an error ζ or ζ � will be generated and mini-
mized in the objective function if vi surpasses the tube.
We can introduce Lagrangian multiplier a, a�,μ,μ� � 0
and rewrite (17) by Lagrangian multiplier method

L(w, b, a, a�, ζ , ζ �,μ,μ�)

= 1

2
	w	2 + κ

u
�

i=1

�

ζi + ζ �
i

� −
u

�

i=1

μiζi −
u

�

i=1

μ�
iζ

�
i

+
u

�

i=1

ai [ci − � − ζi ] +
u

�

i=1

a�
i [−ci − � − ζ �

i ]

(18)
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where ci = w∗φ(vi ) + b − pi . We then let the partial
derivative of L(w, b, a, a�, ζ , ζ �,μ,μ�) with respect to
a, a�, ζ , ζ � equal to zero and further define the kernel
function K(vi , v j ) = φ(vi )

∗φ(v j ) with the commonly
used radial basis function (RBF) kernel, for mapping
the data v to a higher dimensional space. After careful
simplification and arrangement, we can derive

p(s) =
u

�

i=1

(a�
i − ai )K(v, vi ) + b̆ (19)

where b̆ = pi + � − �u
i=1(a

�
i − ai )v∗

i v.
Through experiments, we finally apply the SVR-based

regression for stacking and assign N B = 10, N R = 10, and
N I = 24 in the proposed predictor. More comparisons and
discussions concerning the selection of stacking technologies
will be provided in Section III. In addition, we present a
basic flowchart of our SSEP model in Fig. 4 for reader
convenience: the first step is to generate multiple component
learners based on bagging, random subspace, and inclusive
subspace; the second step is to prune the negative component
learners; and the third step is to apply stacking techniques to
the selected positive component learners for aggregation.

III. EXPERIMENTAL RESULTS

This section is primarily devoted to examining the perfor-
mance of the proposed SSEP model and comparing it with
five popular predictors of PM2.5 concentrations.

A. Experimental Setup
The proposed SSEP is established to properly synthesize

the component learners, which are generated by considering
the diversities of environmental factors, temporal factors, and
selected samples, to forecast the hourly PM2.5 concentration
over the following 48 h. In the first stage, our SSEP applies
the methods of widely used sample selection, feature selection,
etc., to produce component learners. Then, in the second stage,
our SSEP applies the method of newly proposed component
selection to derive the final output. For training and testing
our SSEP model, we have gathered the hourly records of
six air contaminations and six meteorological factors (includ-
ing PM2.5 concentration) from the 12 representative loca-
tions at Beijing, China, constituting 12 data sets, denoted
as D1 ∼ D12. We have successively collected the data dur-
ing the last year. In this work, we apply the four typical
used evaluation measures to check the effectiveness of the
proposed SSEP predictor. In addition to the classical MSE,
the other three evaluation indices are index of agreement (IA),
normalized mean gross error (NMGE), and coefficient of
determination (R2).

1) The IA measures the difference between the predicted
and observed values, as defined as follows:

IA = 1 −
�n

i=1 (pi − oi )
2

�n
i=1 (|pi − ô| + |oi − ô|)2

(20)

where pi and oi are the predicted and observed values
of the i th sample, ô is the mean of all oi , and n is the
number of elements.

2) The NMGE indicates the mean error regardless of it is
over or under estimation and is computed by

NMGE =
�n

i=1 |pi − oi |
�n

i=1 oi
. (21)

3) The R2 reflects the linear relationship between predicted
and observed values, as defined as follows:

R2 = [ �n
i=1 (pi − p̂)(oi − ô) ]2

�n
i=1(pi − p̂)2

�n
i=1(oi − ô)2 (22)

where p̂ is the mean of all pi .

Among these four criteria, a good predictive model should
have a value close to 1 for IA and R2, but a value close to 0
for MSE and NMGE.

According to the aforementioned four evaluation indices,
we introduce five prevailing predictors of PM2.5 concentration
in the performance comparison. The first predictor, called
the VOUK model [20], was proposed by applying principal
component analysis followed by an artificial neural network.
The second predictor, called the VLAC model [21], was
designed based on a stepwise multiple linear regression. The
third predictor, called the KABO model [22], was inspired
by the adaptive neuro-fuzzy inference system. The fourth
and fifth predictors, i.e., the Zheng and spatial-temporal deep
neural network (ST-DNN) models [27], [28], respectively,
were developed by properly incorporating multiple popular
learners or neural networks. We remove the components
related to spatial information in the Zheng and ST-DNN
models since this work only concentrates on Beijing and does
not involve different cities such as [27] and [28]; that is,
each of 12 locations has highly similar latitude and longitude
values. In subsequent comparisons, all models adopt the same
condition when applied to predicting PM2.5 concentration.

B. Performance Evaluation
When comparing our proposed SSEP model with the five

modern PM2.5 predictive models, we first concentrate our
attention on the D1 data set and randomly classify it into
three groups. One group contains 60% of the instances for
training, the second group contains 20% of the instances for
validation, and the third one contains the remaining 20% of the
instances for testing. We repeat the above-mentioned process
200 times and compute the MSE, IA, NMGE, and R2 values
each time. The median values of MSE, IA, NMGE, and R2

are derived and employed for comparison among the five
PM2.5 predictors tested. As listed in Table I, we illustrate the
results of forecasting the PM2.5 concentration on the D1 data
set at the moments of T1, T2, T3, T4, T5, T6, T9, T12, T15,
T18, T21, T24, and T48. As shown in Table I, the proposed
SSEP model has achieved the best prediction performance
in view of the four evaluation criteria above, superior to the
other tested predictive models. In particular, we take the IA
results of all the six predictors as an example. The relative
performance gains between the proposed SSEP model and
one of the five tested models are in the range of 0.1%–10.4%
at T1, 0.31%–10.6% at T2, 0.32%–11.5% at T3, 0.21%–13.0%
at T4, 0.33%–14.4% at T5, 1.34%–18.5% at T6, 0.69%–31.9%
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TABLE I

COMPARISON OF LOG MSE, IA, NMGE, AND R2 AMONG OUR SSEP AND FIVE MODERN MODELS. WE BOLD THE OPTIMAL ONE

TABLE II

COMPARISON OF LOG MSE, IA, NMGE, AND R2 AMONG THE SSEP PREDICTIVE MODELS BASED ON DIFFERENT TECHNOLOGIES

at T9, 1.09%–46.3% at T12, 1.64%–73.3% at T15, 3.10%–124%
at T18, 5.88%–132% at T21, 7.80%–156 % at T24, and
7.03%–770% at T48. It is not difficult to determine that, on the
one hand, our SSEP model is a better implementation than
the other five popular predictive models, and on the other
hand, the superiority of the proposed SSEP model dramatically
increases from the short-term prediction (e.g., improved by

0.1%–10.4% at T1) to the long-term prediction (e.g., improved
by 7.03%–770% at T48).

Note that in this paper, we introduce three methods for
stacking: direct average, weighted average, and SVR-based
regression. It is natural to perform a comparison between them
that involves the proposed SSEP, SSEP_DA, and SSEP_WA
(SSEP based on direct average and weighted average for
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stacking followed by separately applying the selective ensem-
ble to each of the three types of synthesized positive compo-
nent learners that are generated by bagging, random subspace,
and inclusive subspace). In addition to these three methods,
we also include the SSEP_WE (SSEP without ensemble),
SSEP_SF (SSEP with straightforward fusion after ensemble),
and SSEP_SI (SSEP with straightforward incorporation after
selective ensemble, which does not take the influence of
different types of features into account) in the performance
comparison. The results of the aforementioned six predictive
models are reported in Table II. We can draw the subsequent
two main conclusions as follows.

1) The proposed SSEP predictor has constantly delivered
greater performance compared with other competing
predictive models. More specifically, in terms of the
index of IA, the relative performance gains between the
SSEP model and the second-place predictive model in
the five tested models are 0.10% at T1, 0.41% at T2,
0.53% at T3, 1.08% at T4, 1.31% at T5, 1.80% at T6,
3.32% at T9, 6.13% at T12, 10.4% at T15, 12.7% at
T18, 14.1% at T21, 12.6% at T24, and 11.4% at T48.
Importantly, the superiority of our SSEP model becomes
more apparent when observing its achievements that
span the short-term prediction to the long-term predic-
tion, which indicates the necessity of using bagging,
random subspace, inclusive subspace, selective ensemble
and stacking technologies.

2) According to the evaluation measures, we can derive
the following rank: SSEP > SSEP_WA > SSEP_DA >
SSEP_SI > SSEP_SF > SSEP_WE. As a natural exten-
sion, we further implement a comparison of the five
pairs of models whose performance results are close
to each other. First, we consider the difference of IA
results between SSEP_WE and SSEP_SF at the T48
moment. The relative performance gain of IA between
these two models reaches up to 0.88%. This reflects
that introducing ensemble learning is beneficial for
boosting the prediction performance. Second, we cal-
culate the relative performance improvement at T48
between the SSEP_SI and SSEP_SF models. The gain
exceeds 0.87%, and this result shows the positive contri-
bution achieved by introducing the selective ensemble.
Third, the SSEP_DA model is compared with SSEP_SI
in terms of their IA values at T48. The performance
gain between them is unexpectedly higher than 51%,
which illustrates that inserting the impacts of different
types of features into the selective ensemble can greatly
promote the performance of the PM2.5 predictor. Fourth,
we take the difference of IA results between SSEP_WA
and SSEP_DA at the T48 moment into account.
The relative performance gain is approximately 24%,
and this shows that there is a large gain by replacing
the direct average with the weighted average. Fifth,
we carry out a comparison on our proposed SSEP
and SSEP_WA at T48 and find a relative performance
boost beyond 11.4%. It is obvious that the SVR-based
regression leads to a considerable positive function on
the forecast of PM2.5 concentration in comparison with

Fig. 5. Forecast of PM2.5 concentration for a duration of 48 h.

SSEP_WA, as well as SSEP_DA and other tested mod-
els. Overall, considering the differences among environ-
mental factors, temporal factors, and selected samples,
and the introduction of random subspace, inclusive sub-
space, bagging, selective ensemble, and stacking tech-
niques, these methods play important roles in promoting
the performance of the PM2.5 predictor. Furthermore,
appropriately combining the above-mentioned methods
can result in a much greater performance gain compared
with using parts of them.

C. Comparison of Persistence Forecast

The comparison of the persistence forecast between our
SSEP with the state-of-the-art Zheng and ST-DNN models is
carried out. In this situation, we divide the entire D1 data
set into three sequential groups. More concretely, the training
group contains the first 60% of the samples, the validation
group contains the subsequent 20% of the samples, and
the testing group contains the last 20% of the samples.
We determine the aforementioned three models using the
training and validation groups and then implement them to
forecast the concentration of PM2.5 for a duration of 48 h
from the testing group. We show the ground-truth values and
the associated prediction values of Zheng, ST-DNN, and SSEP
in Fig. 5. Comparing these three testing models, it can be
easily observed that the proposed SSEP outperforms the other
two recently proposed predictive models. Furthermore, we can
also find that the ST-DNN is superior to the Zheng model in
many cases.

D. Validation on Different Data Sets

More validations of the effectiveness of our SSEP predictor
are also applied on the other 11 data sets. Similarly, the entire
set of data samples is randomly divided into three groups
with the ratio of 3:1:1, one each for training, validation, and
testing. This process is repeatedly implemented 200 times to
generate 200 values of MSE. We calculate their median values
as illustrated in Tables III and IV. To facilitate a comparison,
we highlight the best model across the ten tested predictive
models with boldface. First, similar to the results on the
D1 data set, the proposed SSEP predictor always performs
better than the other ten tested models on the D2 to D12 data
sets, particularly for the long-term prediction. Second, it was
found that the prediction performance of PM2.5 concentration
continually grows as the bagging, random subspace, inclusive



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

TABLE III

COMPARISON OF LOG MSE OF THE SSEP PREDICTOR AND TEN TESTED
MODELS ON D2–D7 DATA SETS. WE BOLD THE OPTIMAL ONE

TABLE IV

COMPARISON OF LOG MSE OF THE SSEP PREDICTOR AND TEN TESTED
MODELS ON D8–D12 DATA SETS. WE BOLD THE OPTIMAL ONE

subspace, selective ensemble, and stacking technologies are
introduced.

E. Discussion
Although our SSEP has attained the highest performance

among all the competing models used in this paper, the gain
between our SSEP and the state-of-the-art ST-DNN is not
always large. We further compare the proposed SSEP with the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GU et al.: STACKED SELECTIVE ENSEMBLE FOR PM2.5 FORECAST 11

ST-DNN and derive some conclusions as follows. First, due to
the use of various categories of high-complexity deep neural
networks, the ST-DNN needs more computational resources.
In comparison, because the proposed SSEP only depends
on the SVR, it requires relatively less implementation costs.
Second, because of the SVR’s resistance to overfitting, our
proposed SVR-based SSEP should be more robust than the
ST-DNN based on deep neural networks. Third, considering
the merit of deep neural networks in mining deeper relation-
ships than popular machine learners, such as SVR, a good
research direction would be an integration of the proposed
stacked selective ensemble method with deep neural networks.

IV. CONCLUSION

In this paper, we have explored the problem of forecasting
PM2.5 concentrations. According to observations and analyses
from recorded data, the three types of features, namely, envi-
ronmental factors, temporal factors, and selected samples, all
play important roles. Furthermore, applying a proper combi-
nation of these three types of features can lead to remarkable
benefits in predicting the PM2.5 concentration. With the above-
mentioned considerations, this paper has designed the stacked
selective ensemble-based predictor (SSEP) by introducing the
technologies of random subspace, inclusive subspace, bagging,
selective ensemble, SVR-based stacking, and so on. Extensive
experiments conducted on the 12 data sets demonstrate that our
proposed SSEP model is prominently superior to the state-of-
the-art competitors and intermediate models that exploit part
of the aforementioned technologies used in the SSEP predictor.

In this paper, we focus on the prediction of PM2.5 concen-
tration in the city of Beijing. Future studies will be devoted to
other cities by introducing the following two strategies. One
strategy is to transfer the proposed SSEP model to a model
with modified ensemble methods, such as selectively incor-
porating bagging, random subspace, and inclusive subspace
according to the specific characteristic of a city. The other
strategy is to exploit multitask learning to share knowledge
from the proposed predictor with other cities.

REFERENCES

[1] Y. Song et al., “Source apportionment of PM2.5 in Beijing by positive
matrix factorization,” Atmos. Environ., vol. 40, no. 8, pp. 1526–1537,
Mar. 2006.

[2] B. Lv, Y. Hu, H. H. Chang, A. G. Russell, and Y. Bai, “Improving the
accuracy of daily PM2.5 distributions derived from the fusion of ground-
level measurements with aerosol optical depth observations, a case study
in north China,” Environ. Sci. Technol., vol. 50, no. 9, pp. 4752–4759,
Apr. 2016.

[3] K. Gu, J. Qiao, and X. Li, “Highly efficient picture-based prediction
of PM2.5 concentration,” IEEE Trans. Ind. Electron., vol. 66, no. 4,
pp. 3176–3184, Apr. 2019.

[4] G. Yue, K. Gu, and J. Qiao, “Effective and efficient photo–based PM2.5
concentration estimation,” IEEE Trans. Instrum. Meas., to be published.
doi: 10.1109/TIM.2018.2886091.

[5] Standard Operating Procedure for Particulate Matter (PM)
Gravimetric Analysis. Accessed: Jan. 15, 2019. [Online].
Available: https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/
RTIGravMassSOPFINAL.pdf

[6] PM2.5 and PM10 Beta Attenuation Monitor Operating Procedure.
Accessed: Jan. 15, 2019. [Online]. Available: https://fortress.wa.
gov/ecy/publications/documents/1702005.pdf

[7] K. L. Demerjian, “The mechanism of photochemical smog formation,”
Adv. Environ. Sci. Technol., vol. 4, pp. 1–262, 1974.

[8] J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics:
From Air Pollution to Climate Change. Hoboken, NJ, USA: Wiley, 2016.

[9] M. W. Gerry, G. Z. Whitten, J. P. Killus, and M. C. Dodge, “A photo-
chemical mechanism for urban and regional scale computer modelling,”
J. Geophys. Res., Atmos., vol. 94, pp. 12925–12956, 1989.

[10] W. R. Stockwell, F. Kirchner, M. Kuhn, and S. Seefeld, “A new
mechanism for regional atmospheric chemistry modeling,” J. Geophys.
Res., Atmos., vol. 102, no. D22, pp. 25847–25879, 1997.

[11] R. Lu, R. P. Turco, and M. Z. Jacobson, “An integrated air pollution
modeling system for urban and regional scales: 1. Structure and per-
formance,” J. Geophys. Res., Atmos., vol. 102, no. D5, pp. 6063–6079,
1997.

[12] R. Lu, R. P. Turco, and M. Z. Jacobson, “An integrated air pollution mod-
eling system for urban and regional scales: 2. Simulations for SCAQS
1987,” J. Geophys. Res., Atmos., vol. 102, no. D5, pp. 6081–6098, 1997.

[13] C.-H. Huang and C.-Y. Tai, “Relative humidity effect on PM2.5 readings
recorded by collocated beta attenuation monitors,” Environ. Eng. Sci.,
vol. 25, no. 7, pp. 1079–1090, Sep. 2008.

[14] J. Wang and S. Ogawa, “Effects of meteorological conditions on PM2.5
concentrations in Nagasaki, Japan,” Int. J. Environ. Res. Public Health,
vol. 12, no. 8, pp. 9089–9101, Aug. 2015.

[15] J. B. Ordieres, E. P. Vergara, R. S. Capuz, and R. E. Salazar, “Neural
network prediction model for fine particulate matter (PM2.5) on the
US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua),”
Environ. Model. Softw., vol. 20, no. 5, pp. 547–559, May 2005.

[16] U. Kumar and V. K. Jain, “ARIMA forecasting of ambient air pollutants
(O3, NO, NO2 and CO),” Stochastic Environ. Res. Risk Assessment,
vol. 24, no. 5, pp. 751–760, Jul. 2010.

[17] Y. Wang, Q. Ying, J. Hu, and H. Zhang, “Spatial and temporal variations
of six criteria air pollutants in 31 provincial capital cities in China during
2013–2014,” Environ. Int., vol. 73, pp. 413–422, Dec. 2014.

[18] M. Elbayoumi, N. A. Ramli, N. F. F. Yusof, A. S. B. Yahaya,
W. Al Madhoun, and A. Z. Ul-Saufie, “Multivariate methods for indoor
PM10 and PM2.5 modelling in naturally ventilated schools buildings,”
Atmos. Environ., vol. 94, pp. 11–21, Sep. 2014.

[19] V. Valverde, M. T. Pay, and J. M. Baldasano, “Circulation-type classi-
fication derived on a climatic basis to study air quality dynamics over
the Iberian Peninsula,” Int. J. Climatol., vol. 35, no. 10, pp. 2877–2897,
Aug. 2015.

[20] D. Voukantsis, K. Karatzas, J. Kukkonen, T. Räsänen, A. Karppinen, and
M. Kolehmainen, “Intercomparison of air quality data using principal
component analysis, and forecasting of PM10 and PM2.5 concentrations
using artificial neural networks, in Thessaloniki and Helsinki,” Sci. Total
Environ., vol. 409, no. 7, pp. 1266–1276, Mar. 2011.

[21] A. Vlachogianni, P. Kassomenos, A. Karppinen, S. Karakitsios, and
J. Kukkonen, “Evaluation of a multiple regression model for the fore-
casting of the concentrations of NOx and PM10 in Athens and Helsinki,”
Sci. Total Environ., vol. 409, no. 8, pp. 1559–1571, Mar. 2011.

[22] S. Kaboodvandpour, J. Amanollahi, S. Qhavami, and B. Mohammadi,
“Assessing the accuracy of multiple regressions, ANFIS, and ANN
models in predicting dust storm occurrences in Sanandaj, Iran,” Natural
Hazards, vol. 78, no. 2, pp. 879–893, Apr. 2015.

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[24] Accessed: Jul. 30, 2018. [Online]. Available: https://aqicn.org/city/
beijing/us-embassy/cn/

[25] Accessed: Jul. 30, 2018. [Online]. Available: http://www.weather.
com.cn/weather/101010100.shtml

[26] X. J. Zhao et al., “Analysis of a winter regional haze event and its
formation mechanism in the North China Plain,” Atmos. Chem. Phys.,
vol. 13, no. 11, pp. 5685–5696, Jun. 2013.

[27] Y. Zheng et al., “Forecasting fine-grained air quality based on big data,”
in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2015, pp. 2267–2276.

[28] P.-W. Soh, J.-W. Chang, and J.-W. Huang, “Adaptive deep learning-based
air quality prediction model using the most relevant spatial-temporal
relations,” IEEE Access, vol. 6, pp. 38186–38199, 2018.

[29] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, Apr. 2011,
Art. no. 27.

[30] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: Many
could be better than all,” Artif. Intell., vol. 137, nos. 1–2, pp. 239–263,
May 2002.

[31] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996.

http://dx.doi.org/10.1109/TIM.2018.2886091


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

[32] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8,
pp. 832–844, Aug. 1998.

[33] Z. Liu, H. Wang, R. Dollevoet, Y. Song, A. Núñez, and J. Zhang,
“Ensemble EMD-based automatic extraction of the catenary structure
wavelength from the pantograph–catenary contact force,” IEEE Trans.
Instrum. Meas., vol. 65, no. 10, pp. 2272–2283, Oct. 2016.

[34] E. Alickovic and A. Subasi, “Ensemble SVM method for automatic
sleep stage classification,” IEEE Trans. Instrum. Meas., vol. 67, no. 6,
pp. 1258–1265, Jun. 2018.
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